## Calculating Compound Interest

## Compound Interest Formula

$$
\boldsymbol{A}=\boldsymbol{P}\left(1+\frac{r}{n}\right)^{n t}
$$

Where $A$ is the final amount, $P$ is the initial principal balance, $r$ is the interest rate (expressed as a decimal), $\mathbf{n}$ is the number of times the interest in compounded per period, and t is the number of years.

Directions: Use the compound interest formula to solve each of the following to the nearest cent.
1.)

JT invests $\$ 741$ in a savings account with a fixed annual interest rate of $1 \%$ compounded 6 times per year. What will the account balance be after 25 years?
2.) Luigi invests $\$ 741$ in a savings account with a fixed annual interest rate of $6.7 \%$ compounded 2 times per year. What will the account balance be after 12 years?
3.) Bianca invests $\$ 9,873$ in a savings account with a fixed annual interest rate of $4.4 \%$ compounded 12 times per year. What will the account balance be after 30 months?
4.) Christian invests $\$ 15,000$ in a savings account with a fixed annual interest rate of $3.89 \%$ compounded 4 times per year. What will the account balance be after 5 years?
5.) Tina invests $\$ 10,210$ in a savings account with a fixed annual interest rate of $5.16 \%$ compounded 10 times per year. What will the account balance be after 4.25 years?

Gerald invests $\$ 75,350$ in a savings account with a fixed annual interest rate of $8.08 \%$ compounded 2 times per year. What will the account balance be after 9 years?

Desiree invests $\$ 806$ in a savings account with a fixed annual interest rate of $12.72 \%$ compounded 36 times per year. What will the account balance be after 8.5 years?
8.) Andruw invests $\$ 54,777$ in a savings account with a fixed annual interest rate of 6.09\% compounded 8 times per year. What will the account balance be after 21 years?

## ANSWER KEY

1.) JT invests $\$ 741$ in a savings account with a fixed annual interest rate of $1 \%$ compounded 6 times per year. What will the account balance be after 25 years?
\$951.26
2.) Luigi invests $\$ 741$ in a savings account with a fixed annual interest rate of $6.7 \%$ compounded 2 times per year. What will the account balance be after 12 years?
\$1,634.07
3.) Bianca invests $\$ 9,873$ in a savings account with a fixed annual interest rate of $4.4 \%$ compounded 12 times per year. What will the account balance be after 30 months?
\$11,018.80
4.) Christian invests $\$ 15,000$ in a savings account with a fixed annual interest rate of $3.89 \%$ compounded 4 times per year. What will the account balance be after 5 years?
\$18,203.44
5.) Tina invests $\$ 10,210$ in a savings account with a fixed annual interest rate of $5.16 \%$ compounded 10 times per year. What will the account balance be after 4.25 years?
\$12,706.37
6.) Gerald invests $\$ 75,350$ in a savings account with a fixed annual interest rate of $8.08 \%$ compounded 2 times per year. What will the account balance be after 9 years?
\$153,705.51
7.) Desiree invests $\$ 806$ in a savings account with a fixed annual interest rate of $12.72 \%$ compounded 36 times per year. What will the account balance be after 8.5 years?
\$2,371.74
8.) Andruw invests $\$ 54,777$ in a savings account with a fixed annual interest rate of 6.09\% compounded 8 times per year. What will the account balance be after 21 years?
\$195,845.71

